logo Netzschleuder network catalogue, repository and centrifuge

Problems with this dataset? Open an issue.
You may also take a look at the source code.
The networks in this dataset can be loaded directly from graph-tool with:
import graph_tool.all as gt
g = gt.collection.ns["roadnet/CA"]
(and likewise for the other networks available.)

roadnet — U.S. roads (CA, PA, TX)

Description

Road networks from three US states (CA, PA, TX), in which edges are stretches of road and vertices are intersections of roads.1


  1. Description obtained from the ICON project. 

Tags
Transportation Roads Unweighted
Citation
  • J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. "Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters." Internet Mathematics 6(1), 29-123 (2009). arxiv:0810.1355, http://arxiv.org/abs/0810.1355
Upstream URL OK
http://snap.stanford.edu/data/roadNet-CA.html
Networks
Tip: click on the table header to sort the list. Hover your mouse over it to obtain a legend.
Name Nodes Edges $\left<k\right>$ $\sigma_k$ $\lambda_h$ $\tau$ $r$ $c$ $\oslash$ $S$ Kind Mode NPs EPs gt GraphML GML csv
CA 1,971,281 5,533,214 5.61 2.01 3.32 1062213.81 0.13 0.05 857 0.99 Undirected Unipartite 36.9 MiB 54.6 MiB 53.0 MiB 48.3 MiB
PA 1,090,920 3,083,796 5.65 2.05 3.11 1673263.65 0.12 0.05 794 1.00 Undirected Unipartite 20.5 MiB 30.3 MiB 29.6 MiB 25.9 MiB
TX 1,393,383 3,843,320 5.52 2.07 3.56 3265801.80 0.13 0.05 1,064 0.97 Undirected Unipartite 26.1 MiB 39.0 MiB 38.2 MiB 34.4 MiB
Ridiculograms
CA drawing
CA
PA drawing
PA
TX drawing
TX