Problems with this dataset? Open an issue.
You may also take a look at the source code.
The networks in this dataset can be loaded directly from graph-tool with:(and likewise for the other networks available.)import graph_tool.all as gt g = gt.collection.ns["foursquare/NYC_restaurant_checkin"]
Two bipartite networks of users and restaurant locations in New York City on Foursquare, from 24 October 2011 to 20 February 2012. In one network, an edge denotes a check-in event of a user at a restaurant. In the other, an edge exists if a user left a tip/comment on a restaurant. Metadata include comments.1
Name | Nodes | Edges | $\left<k\right>$ | $\sigma_k$ | $\lambda_h$ | $\tau$ | $r$ | $c$ | $\oslash$ | $S$ | Kind | Mode | NPs | EPs | gt | GraphML | GML | csv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NYC_restaurant_checkin | 4,936 | 27,149 | 11.00 | 14.61 | 10.57 | 40.65 | 0.30 | 0.00 | 13 | 0.99 | Undirected | Bipartite | is_user name tags | 142 KiB | 222 KiB | 215 KiB | 159 KiB | |
NYC_restaurant_tips | 6,410 | 10,377 | 3.24 | 5.67 | 9.47 | 92.11 | -0.04 | 0.00 | 19 | 0.84 | Undirected | Bipartite | is_user name tags | tip_text | 439 KiB | 525 KiB | 519 KiB | 521 KiB |